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Abstract. Interpolation has been successfully applied in formal meth-
ods for model checking and test-case generation for sequential programs.
Security protocols, however, exhibit such idiosyncrasies that make them
unsuitable to the direct application of such methods. In this paper, we
address this problem and present an interpolation-based method for se-
curity protocol verification. Our method starts from a formal protocol
specification and combines Craig interpolation, symbolic execution and
the standard Dolev-Yao intruder model to search for possible attacks on
the protocol. Interpolants are generated as a response to search failure
in order to prune possible useless traces and speed up the exploration.
We illustrate our method by means of a concrete example and discuss
the results obtained by using a prototype implementation.
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1 Introduction

Context and Motivation. Devising security protocols that indeed guarantee
the security properties that they have been conceived for is an inherently difficult
problem and experience has shown that the development of such protocols is a
highly error-prone activity. A number of tools have thus been developed for the
analysis of security protocols at design time: starting from a formal specification
of a protocol and of a property it should achieve, these tools typically carry out
model checking or automated reasoning to either falsify the protocol (i.e., find an
attack with respect to that property) or, when possible, verify it (i.e., prove that
it does indeed guarantee that property, perhaps under some assumptions such
as a bounded number of interleaved protocol sessions [17]). While verification
is, of course, the optimal result, falsification is also extremely useful as one can
often employ the discovered attack trace to directly carry out an attack on the
protocol implementation (e.g., [3]) or exploit the trace to devise a suite of test
cases so as to be able to analyze the implementation at run-time (e.g., [4, 6]).

Such an endeavor has already been undertaken in the programming languages
community, where, for instance, interpolation has been successfully applied in
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formal methods for model checking and test-case generation for sequential pro-
grams, e.g., [12,13], with the aim of reducing the dimensions of the search space.
Since a state space explosion often occurs in security protocol verification, we ex-
pect interpolation to be useful also in this context. Security protocols, however,
exhibit such idiosyncrasies that make them unsuitable to the direct application
of the standard interpolation-based methods, most notably, the fact that, in the
presence of a Dolev-Yao intruder [8], a security protocol is not a sequential pro-
gram (since the intruder, who is in complete control of the network, can freely
interleave his actions with the normal protocol execution).

Contributions. In this paper, we address this problem and present an interpo-
lation-based method for security protocol verification. Our method starts from
the formal specification of a protocol and of a security property and combines
Craig interpolation [7], symbolic execution [10] and the standard Dolev-Yao in-
truder model [8] to search for goals (representing attacks on the protocol). Inter-
polation is used to prune possible useless traces and speed up the exploration.

More specifically, our method proceeds as follows: starting (Sect. 3.1) from a
specification of the input system, including protocol, property to be checked and
a finite number of session instances (possibly generated automatically by using a
preprocessor), it first creates a corresponding sequential non-deterministic pro-
gram, in the form of a control flow graph (Sect. 3.2), according to a procedure
that we have devised, and then defines a set of goals and searches for them by
symbolically executing the program (Sect. 3.3). When a goal is reached, an at-
tack trace is extracted from the constraints that the execution of the path has
produced; such constraints represent conditions over parameters that allow one
to reconstruct the attack trace found. When the search fails to reach a goal, a
backtrack phase starts, during which the nodes of the graph are annotated (ac-
cording to an adaptation of the algorithm defined in [13] for sequential programs)
with formulas obtained by using Craig interpolation. Such formulas express con-
ditions over the program variables, which, when implied from the program state
of a given execution, ensure that no goal will be reached by going forward and
thus that we can discard the current branch. The output of the method is a
proof of (bounded) correctness in the case when no goal location can be reached
starting from a finite-state specification; otherwise one or more attack traces are
produced. We illustrate our method by means of a concrete example.

In Sect. 4, we briefly report on some experiments performed by using a proto-
type implementation. We summarize other characteristics of our method in the
concluding remarks (Sect. 5), where we also discuss future work.

2 Background

Security protocols describe how agents exchange messages, built using crypto-
graphic primitives, in order to obtain security guarantees. The algebra of messages
tells us how messages are constructed. Following [5], we consider a countable sig-
nature Σ and a countable set Var of variable symbols disjoint from Σ, and then



Using Interpolation for the Verification of Security Protocols 101

write Σn for the symbols of Σ with arity n; thus Σ0 is the set of constants, which
we assume to have distinct subsets that we refer to as agent names (or simply
just agents), public keys, private keys and nonces (we omit symmetric keys from
our treatment since we do not use them in our running example, but of course
our method can fully support them). The variables are, however, untyped (un-
less denoted otherwise) and can be instantiated with arbitrary types, yielding an
untyped model. We will use upper-case letters to denote variables (e.g., A,B, . . .
to denote agents, N for nonces, etc.) and lower-case letters to denote the corre-
sponding constants (concrete agents names, concrete nonces, etc.) All these may
be possibly annotated with subscripts and superscripts.

The symbols of Σ with arity greater than zero are partitioned into the set Σp

of (public) operations and the set Σm of mappings. The public operations repre-
sent all those operations that every agent (including the intruder) can perform on
messages they know. In this paper, we consider the following operations: {M1}M2

represents the asymmetric encryption of M1 with public key M2; {M1}inv(M2)

represents the asymmetric encryption ofM1 with private key inv (M2) (the map-
ping inv(·) is discussed below); [M1,M2] represents the concatenation ofM1 and
M2. For simplicity, we will often simply write M1,M2 instead of [M1,M2].

In contrast to the public operations, the mappings of Σm do not correspond
to operations that agents can perform on messages, but are rather mappings
between constants. In this paper, we use the following ones: (i) inv(M) gives the
private key that corresponds to public key M ; (ii) for long-term key infrastruc-
tures, we assume that every agent A has a public key pk (A) and corresponding
private key inv(pk (A)); thus pk(· · · ) is a mapping from agents to public keys.

Since we will below also deal with terms that contain variables, let us call
atomic all terms that are built from constants in Σ0, variables in Var , and the
mappings of Σm. The set TΣ(Var) of all terms is the closure of the atomic terms
under the operations of Σp. A ground term is a term without variables, where
we denote the set of ground terms with TΣ . It is standard in formal verification
of security protocols to interpret terms in the free algebra, i.e., every term is
interpreted by itself and thus two terms are equal iff they are syntactically equal.

Our approach is independent of the actual strength of the intruder; here we
consider the Dolev and Yao [8] model of an active intruder, denoted i, who con-
trols the network but cannot break cryptography. In particular, i can intercept
messages and analyze them if he knows the proper keys for decryption, and he
can generate messages from his knowledge and send them under any agent name.

3 A Security Protocol Interpolation Method

The method we propose takes as input a protocol specification, together with a
finite scenario of the protocol and one or more properties to be verified in that
scenario. In the following, we give a recipe for producing a sequential program
for the protocol scenario that we are considering, in the form of a control flow
graph. The graph is enriched with locations required for handling the goals; in
particular, for each property to be verified, a goal location is defined, and the
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A → B : {NA, A}pk(B) A → B : {NA, A}pk(B) A → i : {NA, A}pk(i)

B → A : {NA, NB, B}pk(A) B → A : {NA, NB}pk(A) i(A) → B : {NA, A}pk(B)

A → B : {NB}pk(B) A → B : {NB}pk(B) B → i(A) : {NA, NB}pk(A)

i → A : {NA, NB}pk(A)

A → i : {NB}pk(i)

i(A) → B : {NB}pk(B)

Fig. 1. NSL message exchange (left), NSPK message exchange (middle) and Man-in-
the-middle attack on NSPK (right)

verification task consists in checking whether any execution of the protocol can
reach one or more of such locations. The exploration is performed by using the
algorithm of [13], which proceeds by executing symbolically the program and
exploits Craig interpolation in order to prune the search over the graph. In the
case when a goal location is reached, an attack trace is extracted.

3.1 Input

Given a protocol P involving a set R of roles (Alice, Bob, . . ., a.k.a. entities), a
session (instance) of P is a function si assigning an agent (honest agent or the
intruder i) to each element of R. A scenario of a protocol P is a finite number
of session instances of P . The input of our method is then: (1) a specification
of a protocol P , (2) a scenario S of P , (3) a set of goals (i.e., properties to be
verified) in S. For what concerns the definition of a scenario, we remark that
when a role is assigned the agent i, it is intended to be played by the intruder,
either under his real name i or pretending to be some other agent.

Example 1. As a running example, we will use NSL (Fig. 1, left), the Needham-
Schroeder Public Key (NSPK) protocol with Lowe’s fix [11], which aims at mu-
tual authentication between A and B. The presence of B in the second message
prevents the man-in-the-middle attack that NSPK suffers from (see Fig. 1, right,
where i(A) denotes that the intruder is impersonating the honest agent A).

As a formal specification language, we will use a subset of ASLan++ [1, 18].
In the following extract of the specifications for NSL, the two roles are Alice,
who is the initiator of the protocol, and Bob, the responder.

1 entity Alice(Actor , B: agent) {
2 symbols
3 Na, Nb: text;
4 body{
5 Na := fresh();
6 Actor -> B: {Na,Actor}_pk(B);
7 B -> Actor: {Na ,?Nb,B}_pk(Actor);
8 Actor -> B: {Nb}_pk(B);
9 }

10 }

11 entity Bob(A, Actor: agent) {
12 symbols
13 Na, Nb: text;
14 body{
15 ? -> Actor: {?Na ,?A}_pk(Actor);
16 Nb := fresh();
17 Actor -> A: {Na,Nb,Actor}_pk(A);
18 A -> Actor: {Nb}_pk(Actor);
19 }
20 }

The elements between parentheses in line 1 declare which variables are used
to denote the agents playing the different roles along the specification of the role
Alice: Actor refers to the agent playing the role of Alice itself, while B is the
variable referring to the agent who plays the role of Bob. Similarly, the section
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Alice1.Actor → Alice1.B : {Alice1.Na,Alice1.Actor}pk(Alice1.B) a → i : {c1, a}pk(i)

? → Bob2.Actor : {Bob2.Na,Bob2.A}pk(Bob2.Actor) i(a) → b : {c1, a}pk(b)

Bob2.Actor → Bob2.A : {Bob2.Na,Bob2.Nb}pk(Bob2 .A) b → i(a) : {c1, c2}pk(i(a))

Alice1.B → Alice1.Actor : {Alice1.Na,Alice1.Nb}pk(Alice1.Actor) i → a : {c1, c2}pk(a)

Alice1.Actor → Alice1.B : {Alice1.Nb}pk(Alice1.B) a → i : {c2}pk(i)

Bob2.A → Bob2.Actor : {Bob2.Nb}pk(Bob2 .Actor) i(a) → b : {c2}pk(b)

Fig. 2. Symbolic attack trace of man-in-the-middle-attack on NSPK (left) and instan-
tiated attack trace (right) obtained with our method

symbols declares that Na and Nb are variables of type text. The section body

specifies the behavior of the role. First, the operation fresh() assigns to the
nonce Na a value that is different from the value assigned to any other nonce.
Then Alice sends the nonce, together with her name, to the agent B, encrypted
with B’s public key. In line 7, Alice receives her nonce back together with a
further variable (expected to represent B’s nonce along a regular session of the
protocol) and the name of B, all encrypted with her own public key. The “?” in
?Nb is used to represent an assignment of the value received to the variable Nb.
As a last step, Alice sends to B the nonce Nb encrypted with B’s public key.

The variable declarations and the behavior of Bob are specified by lines 12-
21. We omit a full description of the code and only remark that the “?” in the
beginning of line 16 denotes the fact that the sender of such a message can be
any agent, though no assignment is made for ? in that case. �

3.2 From a Protocol Specification to a Sequential Program

The algorithm of [13] is designed for sequential programs. In order to apply it to
security protocols, we define a translation from the specification of a protocol P
for a given scenario into a corresponding sequential non-deterministic program.
Such a program will be encoded in a pseudo-language admitting the standard
constructs for assignments and conditional statements, as well as a type Message.

3.2.1 Translating a Session Specification into a Sequential Program
We now describe how to obtain a program for a single session instance si ; we
will then consider more session instances in Sect. 3.2.3. First of all, note that the
exchange of messages in a session follows a given flow of execution that can be
used to determine an order between the instructions contained in the different
roles. Such a sequence of instructions will constitute the skeleton of our program.
However, we will omit from the sequence those instructions contained in a role
that is played by the agent i, whose behavior will be treated differently.

We use as program variables the same names used in the specification.
However, in order to distinguish between variables with the same name occur-
ring in the specification of different roles, program variables have the form E.V

where E denotes the role and V the variable name in the specification. An ad-
ditional variable IK, of a type MessageSet, is used in the program to represent
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the intruder knowledge. Similarly, constants of the specification become program
constants.

Whenever a session is played only by honest agents, the execution of the
corresponding sequential program is univocally determined. The behavior of the
intruder introduces a form of non-determinism, which we capture by representing
the program, in the case when the intruder plays a role, as a procedure depending
on a number of parameters, denoted by variables Y, possibly subscripted.

3.2.1.1 Initialization of the Variables. A first section of the program initializes
the variables. For each role Alice such that si(Alice) �= i, we have an instruction
Alice.Actor := a, where a is an agent name such that si(Alice) = a. Whenever
Alice is an initiator, for each responder Bob with B being the variable referring
to the role Bob between the agent variables of Alice: if si(Bob) �= i, then we have
the assignment Alice.B := b, where b is such that si(Bob) = b, else we have
Alice.B := Y, for Y an input variable not introduced elsewhere in the program.

Finally, we need to initialize the intruder knowledge. A typical IK initialization
has the form: IK := {a_1,...,a_n,i,pk(a_1),...,pk(a_n),pk(i),inv(pk(

i))}. That is, i knows the agents a_j involved in the scenario and their public
keys pk(a_j), as well as his own public and private keys pk(i) and inv(pk(i)).
Specific protocols might require a specific initial IK or the initialization of further
variables, depending on the context, such as symmetric keys. In our programs,
we also allow a construct of the form IK |- M to denote that the intruder is able
to construct the message M from its current intruder knowledge IK (i.e., derive
it using its inference rules for generating and analyzing messages).

3.2.1.2 Sending and Receipt of a Message. The sending of a message Actor

-> B: M defined in a role Alice is translated into the instruction IK := IK + M,
where the symbol + denotes the addition of the message M to IK.

In order to define the receipt of a message R -> Actor: M in a role Alice
from some Bob we distinguish two cases. If the message is sent by the intruder,
i.e., si(Bob) = i, then the instruction is translated into the following code:

1 If (IK |- Alice.M)
2 then Alice.Q_1 := Y_1; ... ; Alice.Q_n := Y_n;
3 else end

where Q_1, ..., Q_n are the variables occurring preceded by ? in R -> Actor

: M and Y_1, ..., Y_n are distinct input variables not introduced elsewhere.
If si(Bob) �= i, then the receipt R -> Actor: M corresponds to, and within the

flow of execution is immediately preceded by, a sending Actor -> R’: M’ in the
specification of Bob, which matches R -> Actor: M. In this case, we translate
the instruction into: Alice.Q_1 := q_1; ...; Alice.Q_n := q_n where Q_1,
..., Q_n are all the variables occurring preceded by ? in R -> Actor: M and
q_1, ..., q_n the expressions matching with Q_1, ..., Q_n, respectively, in
Actor -> R’: M’. For instance, the receipt ? -> Actor:{?Na,?A}_pk(Actor)

at line 15 in the specification of Bob in Example 1 corresponds to the sending
Actor -> B: {Na,Actor}_pk(B) at line 6 in the specification of Alice. We can
translate such a receipt into: Bob.Na := Alice.Na; Bob.A := Alice.Actor.
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3.2.1.3 Generation of Fresh Values. An instruction of the form N := fresh

() in Alice, which assigns a fresh value to a nonce, can be translated into the
instruction Alice.N := c_1, where c_1 is a constant not introduced elsewhere.

Example 2. Fig. 3 shows the programs obtained for the two session instances of
the NSL scenario we are interested in: in session 1, Alice and Bob are played by
a and i respectively; in session 2, they are played by i and b, respectively. �

3.2.2 Introducing Goal Locations. The next step consists in decorating
the program with a goal location for each security property to be verified. As it
is common when performing symbolic execution [10], we express such properties
as correctness assertions, typically placed at the end of a program. Once we have
represented a protocol session as a program, and defined the properties we are
interested in as correctness assertions in such a program, the problem of verifying
security properties over (a session of) the protocol is reduced to verifying the
correctness of the program with respect to those assertions.

We consider here three common security properties (authentication, confi-
dentiality and integrity) and show how to represent them inside the program in
terms of assertions. They are expressed by means of the statement prove, which
in symbolic execution is commonly used to represent an output assertion required
to evaluate to true in order to have the correctness of the program. Semantically,
the instruction prove(expr) is equivalent to if (not(expr))then error.

3.2.2.1 Authentication. Assume we want to verify that Alice authenticates Bob
with respect to a message M in the specification of the protocol, in a given session
instance si . We can restrict our attention to the case when si(Bob) = i, since if
Bob is played by an honest agent, then the authentication property is trivially
satisfied. The problem thus reduces to verifying whether the agent i is playing
under his real name (in which case authentication is again trivially satisfied) or
whether i is pretending to be someone else, i.e., whether the agent playing Alice
believes she is speaking to someone who is not i. Hence, we can simply add the
assertion prove(Alice.B = i), where B is the agent variable referring to the
role Bob inside Alice, immediately after the receipt of the message M.

Example 3. In NSL, we are interested in verifying a property of authentication
in the session that assigns i to Alice and b to Bob: we want Bob to authenticate
Alice with respect to the nonce Bob.Nb in the receipt of line 2.14 (Fig. 3).
Since the statement corresponding to such a receipt is the last instruction of the
program, we can just add the instruction prove (Bob.A = i) at the end. �

3.2.2.2 Confidentiality. Assume that we want to verify that the message cor-
responding to a variable M, in the specification of a role Alice of the protocol, is
confidential between a given set of roles R in a session si . As we did for authen-
tication, since we are in an instantiated scenario, we ignore the case when the
session is played only by honest agents, in which case confidentiality is preserved.
In general, we can restrict to checking whether the agent i got to know the con-
fidential message M even though i is not included in R. Inside the program, this
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corresponds to checking whether the message Alice.M can be derived from the
intruder knowledge and whether any honest agent playing a role in R believes
that at least one of the other roles in R is indeed played by i, which we can read
as having indeed i ∈ R. This corresponds to the following assertion, to be added
at the end of the program:

1 prove ((not(IK |- Alice.M) or
2 (Alice_1 .B^1_1 = i) or ... (Alice_1 .B^1_m = i) or ...
3 (Alice_n .B^n_1 = i) or ... (Alice_n .B^n_m = i))

where Alicej, for 1 ≤ j ≤ n, is a role such that Alicej ∈ R and si(Alicej) �= i,
{Bob1, . . . , Bobm} ⊆ R is the subset of those roles in R that are instantiated
with i by si and B^j_l, for 1 ≤ j ≤ n and 1 ≤ l ≤ m, is the variable referring to
the role Bobl in the specification of the role Alicej.

Example 4. For NSL, assume that we want to verify the confidentiality of the
variable Nb (contained in the specification of Bob) between the roles in the set
{Alice, Bob}. We can express this goal by appending at the end of the program
the assertion prove ((not(IK |- Bob.Nb))or (Bob.A = i)). �

3.2.2.3 Integrity. In this case, we assume that two variables (possibly of two
different roles) are specified in input as the variables containing the value whose
integrity needs to be checked. The check will consist in verifying whether the two
variables, at a given point of the session execution, also given in input, evaluate
to the same. Let M in the role Alice and M’ in the role Bob be the two variables;
then the corresponding correctness assertion will be prove(Alice.M = Bob.M’).

3.2.3 Combining More Sessions. Now we need to define a program that
properly “combines” the programs related to all the sessions in the scenario.
The idea is that such a program allows for executing, in the proper order, all the
instructions of all the sessions in the scenario; the way in which instructions of
different sessions are interleaved will be determined by the value of further input
variables, denoted by X, which can be seen as choices of the intruder with respect
to the flow of the execution. Namely, we start to execute each session sequentially
and we get blocked when we encounter the receipt of a message sent by a role
that is played by the intruder. When all the sessions are blocked on instructions
of that form, the intruder chooses which session has to be reactivated.

In the following, we will see a sequential program as a graph (which can
be simply obtained by representing its control flow) on which the algorithm of
Sect. 3.3 will be executed. We adapt from [13] some notions concerning programs
and program runs. A program graph is a finite, rooted, labeled graph (Λ, l0, Δ)
where Λ is a finite set of program locations, l0 is the initial location and Δ ⊆
Λ × A × Λ is a set of transitions labeled by actions from a set A, consisting in
the instructions of the program. A program path of length k is a sequence of the
form l0, a0, l1, a1, . . . , lk, where each step (lj , aj , lj+1) ∈ Δ for 0 ≤ j < k − 1.
The set D of data states is the set of all the maps V → D from the set V of
program variables to the set D of possible data values, i.e., integers (for variables
of the form Xi), ground messages (for variables denoting messages) or sets of
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ground messages (for the special variable IK ). The semantics Sem(a) of an
action a ∈ A is a subset of D×D. We assume an initial data state d0. A program
run of length k is a pair (π, σ), where π is a program path l0, a0, l1, a1, . . . , lk
and σ = d0, . . . , dk is a sequence of data states such that (dj , dj+1) ∈ Sem(aj)
for 0 ≤ j < k. A state is a pair (l, d) such that l ∈ Λ and d ∈ D.

We have seen in Sects. 3.2.1 and 3.2.2 how to generate the program, and thus
the corresponding control flow graph of a single session. The program graph cor-
responding to a whole scenario can be obtained by composing the graphs of the
single sessions. Given a program graph, an intruder location is a location of the
graph corresponding to the receipt of a message sent from a role played by i. A
block B of a program graph G′ is a subgraph of G′ such that its initial location
is either the initial location of G′ or an intruder location. The exit locations of
a block B are the locations of B with no outgoing edges. Intuitively, we proceed
by decomposing a session program graph Gi into a sequence of blocks starting
at each intruder location. The idea is that each such a block will occur as a sub-
graph in the general scenario graph G (possibly with more than one occurrence).
Namely, each path of the resulting graph will contain all the blocks of the sce-
nario just once, and the set of all paths will cover all the possible sequences that
respect the order of the single sessions. For instance, given the block structures
(B1

1,B1
2) and (B2

1), the resulting graph will contain a path corresponding to the
execution of B1

1,B1
2,B2

1 in this order, as well as a path for B1
1,B2

1,B1
2, as well

as a path for B2
1 ,B1

1,B1
2. A simple algorithm for automatically performing this

composition has been devised; we omit it due to lack of space.

Example 5. Fig. 3 shows the program graph for the scenario consisting of the
session instances si1 and si2 such that si1(Alice) = a, si1(Bob) = i = si2(Alice)
and si2(Bob) = b for NSL. Note that the set of instructions concerning a block
are grouped into a single edge (and the corresponding lines of code in the pro-
grams of Example 2 are used to label the edge in the figure). For clarity, the
initialization section and the goal assertions are reported on separate edges,
though they belong to a larger block. Note also that, for clarity, variable names
are subscripted with the number of the session where they occur, e.g., a variable
Alice.B occurring in the program of si2 is renamed as Alice_2.B. �

3.3 Algorithm for Symbolic Execution and Annotation

In this section, we recall the IntraLA algorithm of [13] and describe how we
can calculate interpolants in our case. The algorithm executes symbolically a
program graph searching for goal locations, which represent attacks. In the case
when we fail to reach a goal, an annotation (i.e., a formula expressing a condition
under which no goal can be reached) is produced by using Craig interpolation.
Through a backtrack phase, such an annotation is propagated to the other nodes
of the graph and can be used to block a later phase of symbolic execution along
an uninteresting run, i.e., a run for which the information contained in the
annotation allows one to foresee that it will not reach a goal.
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1.1 Alice.Actor := a;
1.2 Alice.B := Y_1;
1.3 IK := {a,b,i,pk(a),pk(b),pk(i),inv(pk(i))};
1.4

1.5 Alice.Na := c_1;
1.6 IK := IK + {Alice.Na,Alice.Actor}_pk(Alice.B

);
1.7

1.8 if (IK |- {Alice.Na ,?Alice.Nb ,Alice.B}_pk(
Alice.Actor))

1.9 then
1.10 Alice.Nb = Y_2;
1.11 else
1.12 end
1.13

1.14 IK := IK + {Alice.Nb}_pk(Alice.B);

2.1 Bob.Actor := b;
2.2 IK := {a,b,i,pk(a),pk(b),pk(i),inv(pk(i))};
2.3

2.4 if (IK |- {?Bob.Na ,?Bob.A}_pk(Bob.Actor))
2.5 then
2.6 Bob.Na = Y_1;
2.7 Bob.A = Y_2;
2.8 else
2.9 end

2.10

2.11 Bob.Nb := c_1;
2.12 IK := IK + {Bob.Na ,Bob.Nb,Bob.Actor}_pk(Bob.

A);
2.13

2.14 if (IK |- {Bob.Nb}_pk(Bob.Actor))
2.15 then
2.16 do nothing
2.17 else
2.18 end
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Fig. 3. NSL example: program for session si1 (top-left), program for session si2
(bottom-left), control flow graph for the whole scenario (right)

We will use a two-sorted first-order language with equality. The first sort is
based on the algebra of messages, over which we allow a set of unary predicates
DYj

IK for 1 ≤ j ≤ n with a fixed n ∈ N, whose meaning will be clarified below.
The second sort is based on a signature containing variables (denoted in our
examples by Xi) and uninterpreted constants (for which we use integers), and
allows no functions and no predicates other than equality. We assume fixed the
sets of constants and denote by L(V) the set of well-formed formulas of such a
two-sorted first-order language defined over a (also two-sorted) set V of variables,
to be instantiated with the variables and parameters of our programs.

First, we introduce some notions concerning symbolic execution. Let V be
the set of program variables (for which, in the following, we will use standard
math fonts). A symbolic data state is a triple (P,C,E), where P is a (two-
sorted) set of parameters, i.e., variables not in V , C ∈ L(P ) is a constraint over
the parameters, and the environment E is a map from the program variables
V to terms of the corresponding sort defined over P , with the only exception
of the variable IK , which is mapped instead to a set of message terms. We
denote by S the set of symbolic data states. Given its definition, a symbolic
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data state s can be characterized by the predicate χ(s) = C ∧ (
∧

v∈V \{IK}(v =

E(v))) ∧ (
∧

M∈E(IK ) DY0
IK (M)). Note that the variable IK is treated in a par-

ticular way, i.e., we translate the fact that E(IK ) = M for some set M of
parametric messages into a formula expressing that a predicate DY0

IK holds for
the messages in M. A symbolic data state s can be associated to the set γ(s)
of data states produced by the map E for some valuation of the parameters
satisfying the constraint C. We assume a defined initial symbolic data state
γ(s0) = {d0}. A symbolic state is a pair (l, s) ∈ Λ × S. A symbolic interpreter
SI is a total map from the set A of actions to S×S such that for each symbolic
data state s and action a, ∪γ(SI(a)(s)) = Sem(a)(γ(s)). Intuitively, SI takes a
symbolic data state s and an action a and returns a non-empty set of symbolic
data states, which represent the set of states obtained by executing a on s.

The algorithm state is a triple (Q,A,G) where Q is the set of queries, A is a
(program) annotation and G ⊆ Λ is the set of goal locations that have not been
reached. A query is a symbolic state. During the execution of the algorithm,
the set of queries is used to keep track of which symbolic states still need to be
considered, i.e., of those symbolic states whose location has at least one outgoing
edge that has not been symbolically executed, and the annotation is a decoration
of the graph used to prune the search. Formally, a program annotation is a set
of pairs in (Λ ∪ Δ) × L(V ). We will write these pairs in the form l : φ or
e : φ, where l is a location, e is an edge and φ is a formula called the label.
When we have more than one label on a given location, we can read them as
a disjunction of conditions: we define A(l) =

∨
{φ | l : φ ∈ A}. For an edge

e = (ln, a, ln+1) the label e : φ is justified in A if starting from the precondition
formula φ and by executing the action a, the postcondition produced is A(ln+1),
i.e., when it implies the annotation of ln+1 after executing a. In that case, we
write J (e : φ,A). Let Out(l) be the set of outgoing edges from a location l; the
label l : φ is justified in A when, for all edges e ∈ Out(l), there exists e : ψ ∈ A
such that ψ is a logical consequence of φ. An annotation is justified when all
its elements are justified. A justified annotation is inductive and if it is initially
true, then it is an inductive invariant. The algorithm maintains the invariant
that A is always justified. A query q = (l, s) is blocked by a formula φ when
s |= φ and we then write Bloc(q, A(φ)). With respect to q, the edge e is blocked
when Bloc(q, A(e)) and the location l is blocked when Bloc(q, A(l)).

The rules of the algorithm IntraLA are given in Fig. 4. First, we initialize
the algorithm state to ({(l0, s0)}, ∅, G0), i.e. the algorithm starts from the initial
location, the initial symbolic data state, an empty annotation and a set G0 of
goals to search for, which is given as input.

The Decide rule is used to perform symbolic execution. By symbolically exe-
cuting one program action, it generates a new query from an existing one. It may
choose any edge that is not blocked and any symbolic successor state generated
by the action a. If the generated query is itself not blocked, it is added to the
query set. In the rule, SI is a symbolic interpreter, ln and sn are the currently
considered location and symbolic data state, respectively, and ln+1 and sn+1 the
location and symbolic data state obtained after executing a. The side conditions
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Q,A,G

Q + (ln+1, sn+1), A,G
Decide

q = (ln, sn) ∈ Q

e = (ln, a, ln+1) ∈ Δ

¬Bloc(q, A(e))

sn+1 ∈ SI(a)(sn)

¬Bloc((ln+1, sn+1), A(ln+1))

Q,A,G

Q,A + e : φ,G
Learn

q = (ln, sn) ∈ Q

e = (ln, a, ln+1) ∈ Δ

Bloc(q, φ)

J (e : φ,A)

Q,A,G

Q − q, A + ln : φ,G − ln
Conjoin

q = (ln, s) ∈ Q

¬Bloc(q, A(ln))

( ∀e ∈ Out(ln).

e : φe ∈ A ∧ Bloc(q, φe) )

φ =
∧

{φe | e ∈ Out(ln)}

Fig. 4. Rules of the algorithm IntraLA with corresponding side conditions

of the Decide rule are that moving from sn to sn+1, the first needs to be into the
query set and the branch between the two nodes must exist and not be blocked.

During the backtrack phase, two rules are used: Learn generates annotations
and Conjoin merges annotations coming from different branches. If some outgo-
ing edge e = (ln, a, ln+1) is not blocked, but every possible symbolic step along
that edge leads to a blocked state, then the rule infers a new label φ that blocks
the edge, where the formula φ can be any formula φ that both blocks the current
query and is justified. In the following, we will explain how it can be obtained by
exploiting the Craig interpolation lemma [7], which states that given two first-
order formulas α and β such that α ∧ β is inconsistent, there exists a formula γ
(their interpolant) such that α implies γ, γ implies ¬β and γ ∈ L(α) ∩ L(β).

Let μ be a term, a formula, or a set of terms or of formulas. We write μ′ for
the result of adding one prime to all the non-logical symbols in μ. Intuitively,
the prime is used to refer to the value of a same variable in a later step and it is
used in transition formulas, i.e., formulas in L(V ∪V ′). Since the semantics of an
action Sem(a) expresses how we move from a data state to another, we can easily
associate to Sem(a) a transition formula. With a slight abuse of notation, in the
following, we will use Sem(a) to denote the corresponding transition formula.

In our context, the most interesting case is when the action a is represented
by a conditional statement, with a condition of the form IK �M for some mes-
sage M . The intuitive meaning of the statement IK � M is that the message
M can be derived from a set of messages denoted by IK by using the standard
Dolev Yao intruder inference power. In our treatment, we fix a value n as the
maximum number of inference steps that the intruder can execute in order to
derive M . We observe that this is not a serious limitation of our method since
several results (e.g., [17]) show that, when the number of sessions is finite, as
in our case, it is possible to set an upper bound on the number of inference
steps needed. Such a value can be established a-priori by observing the set of
messages exchanged in the protocol scenario; we assume such an n to be fixed
for the whole scenario. We use formulas of the form DYj

IK (M), for 0 ≤ j ≤ n,
with the intended meaning that M can be derived in j steps of inference by
the intruder. In particular, the predicate DY0

IK is used to represent the initial
knowledge IK , before any inference step is performed. Under the assumption on
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the n mentioned above, the statement IK �M can be expressed as the formula
DYn

IK (M). The formula

ϕj = ∀M. (DYj+1
IK (M)↔(DYj

IK (M) ∨ (∃M ′.DYj
IK ([M,M ′])∨DYj

IK ([M ′,M ]))

∨ (∃M1,M2.M=[M1,M2]∧DYj
IK (M1)∧DYj

IK (M2))

∨ (∃M1,M2.M={M1}M2∧DYj
IK (M1)∧DYj

IK (M2)))

∨ (∃M ′.DYj
IK ({M}M′ )∧DYj

IK (inv(M ′))) ∨ (∃M ′.DYj
IK ({M}inv(M′))∧DYj

IK (M ′)) ,

in which ↔ denotes the double implication and each quantification has to be
intended over the sort of messages, expresses (as a disjunction) all the ways in
which a given message can be inferred by the intruder in one step, i.e. by an
operation of analysis or construction, thus moving from a knowledge (denoted
by the predicate) DYj

IK to a knowledge (denoted by the predicate) DYj+1
IK .

A theory TMsg(n) over the sort of messages is obtained by enriching classical
first-order logic with equality with the axioms ϕj , for 1 ≤ j < n, together with
additional axioms formalizing that any two distinct ground terms are not equal.

Now let α = χ(sn) and β = Sem(a)∧¬A(ln+1)
′. We can obtain the formula φ

we are looking for, in the rule Learn, as an interpolant for α and β, possibly by
using an interpolating theorem prover. With regard to this, we observe that, in
the presence of our finite scenario assumption, when mechanizing such a search,
the problem can be simplified by restricting the domain to a finite set of messages.

Finally, the rule Conjoin is applied when all the outgoing edges of the location
in a query q are blocked. The location in q is labeled with the conjunction of the
labels that block the outgoing edges. If the location is a goal, then we remove it
from the set of remaining goals. Finally, the query is discarded from Q.

The algorithm terminates when no rules can be applied. In [13], the correctness
of the algorithm, with respect to the goal search, is proved: the proof given there
applies straightforwardly to the slightly simplified version we have given.

Theorem 1. Let G0 be the set of goal locations provided in input. If the al-
gorithm terminates with the algorithm state (Q,A,G), then all the locations in
G0 \G are reachable and all the locations in G are unreachable.

The output of our method can be of two types. If no goal has been reached,
then we have a proof that no attack can be found, with respect to the security
property of interest, in the finite scenario that we are considering. Otherwise,
for each goal location that has been found, we can generate a test case, in the
form of an attack trace, which can be easily inferred from the information in the
symbolic data state corresponding to the last step of execution. We also note
that, by a trivial modification of the rule Conjoin , we might easily obtain an
algorithm that keeps searching for a goal that has already been reached through
a different path, thus allowing to extract more attack traces for the same goal.

Example 6. Here we show the execution of the algorithm on the NSL graph
of Fig. 3: Fig 5 summarizes the algorithm execution. Note that in the table,
we use statements of the form IK �M in the constraint set as an abbreviation
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N Rule Edge A C E

0 Init - ∅ ∅ ∅
1 Decide (l0, l1) ∅ C0 E0 ⊕ {(Alice1.Actor, a), (Y1.y1), (Alice1.Bob, y1),

(Bob2.Actor, b),
(IK , {a, b, i, pk(a), pk (b), pk (i), inv(pk (i))})}

2 Decide (l1, l2) ∅ C1 E1 ⊕ {(Alice1.Na, c1),
(IK , IK 1 ∪ {c1, a}pk(y1))}

3 Decide (l2, l3) ∅ C2 ∪ {(x1 = 1)} E2 ⊕ {(X1, x1)}
4 Decide (l3, l4) ∅ C3 ∪ {IK 2 � E3 ⊕ {(Alice1.Nb, y2),

{c1, y2, y1}pk(a)} (IK , IK 2 ∪ {y2}pk(y1))}
5 Decide (l4, l5) ∅ C4 ∪ {IK 4 � E4 ⊕ {(Y3, y3), (Bob2.A, y3), (Y4, y4), (Bob2.Na, y4),

{y4, y3}pk(b)} (Bob2.Nb, c2), (IK , IK 4 ∪ {y4, c2, b}pk(y3))
6 Decide (l5, l6) ∅ C5 ∪ {IK 5 � {c2}pk(b)} E5

7 Learn - {(l6, g) : Bob2.A = i} C6 E6

8 Conjoin (l6, g) A7 ∪ {l6 : Bob2.A = i} C7 E7

9 Learn - A8 ∪ {(l5, l6) : Bob2.A = i ∨ CV } C8 E8

10 Conjoin (l5, l6) A9 ∪ {l5 : Bob2.A = i ∨ CV } C9 E9

11 Decide (l2, l7) A10 {(x1 = 2)} E2 ⊕ {(X1, x1)}
12 Decide (l7, l8) A10 C11 ∪ {IK 2 � E2 ⊕ {(Y3, y3), (Bob2.A, y3), (Y4, y4), (Bob2.Na, y4),

{y4, y3}pk(b)} (Bob2.Nb, c2), (IK , IK 2 ∪ {y4, c2, b}pk(y3))}
13 Decide (l8, l9) A10 C12 ∪ {(x2 = 1)} E12 ⊕ {(X2, x2)}
14 (l9, l5) A10 C13 E13

In step 9, CV ∈ L(V ) is a constraint over V s.t. CV entails IK5 � {Bob2.Nb}pk(Bob2.Actor)

Fig. 5. Execution of the algorithm on the control flow graph for NSL

for the set of constraints over the parameters that make the (translation of
the) statement satisfiable. Further, Pi, Ci and Ei denote, respectively, the set of
parameters, the set of constraints and the environment at step i of the execution.

After the initialization, symbolic execution steps are performed from query
(l0, s0) to (l5, s6) by using the rule Decide (steps 1–6). In step 7, we note that any
symbolic execution step through the edge (l6, g), leads to a blocked query. The
algorithm thus creates interpolants and propagates them back to l5 (steps 7−10),
where the symbolic execution restarts, via applications of Decide , until step 14.
Again, any symbolic step on the query (l9, s13) along the edge (l9, l5) leads to
a blocked query, i.e., it generates a symbolic state that entails the annotation
Bob2.A = i∨CV . This is a concrete example of how the annotation method can
improve the search procedure: we can stop following the path of query (l9, s13)
as the annotation ensures we will never reach a goal.

By applying the method to NSPK, instead, we reach the goal with an execu-
tion close to the one seen for NSL. In fact, in the corresponding of step 14, we
have that the inequality Bob2.A �= i does not make the constraint set unsatisfi-
able. To extract an attack trace, first we consider the values of the xj parameters
contained in the last constraint set, i.e., {x1 = 2, x2 = 1}, which express the or-
der in which the two sessions are interleaved, thus obtaining a symbolic attack
trace (Fig. 2, left). We can further instantiate this trace, by using parameter and
constant values of the last symbolic data state, thus obtaining the instantiated
attack trace (Fig. 2, right). In particular, we note that y3 is not constrained to
be equal to i; this allows the intruder to act as pretending to be the honest agent
a in the second session, from which we get the man-in-the-middle-attack. �
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4 Experiments and Results

We have implemented a Java prototype called SPiM (Security Protocol inter-
polation Method) based on Z3 [16] and iZ3 [14] for satisfiability checking and
interpolant generation, respectively. We use a modified version of the algorithm
in [13], where we propagate annotations only if they can be effectively used to
stop the execution of some other path (i.e., during the backtracking we only
annotate locations and edges that can be reached by some path not visited yet).

In order to show that the method concretely speeds up the validation, we have
tested SPiM with and without the interpolation part (consisting of the rules
Learn and Conjoin) on NSL and NSPK. The total execution time on a general
purpose computer ranges from 8s for NSPK to 83s for NSL. While for NSPK
there are no pruned paths and consequently the two versions of the algorithm
perform with the same time, on NSL SPiM is 1.5-3.5% (depending on the quality
of the computer used) faster when using interpolation. This experiment shows
that, even on examples where the annotation method does not prune the search
space considerably (in NSL we only save two steps of symbolic execution), the
time of validation tends to decrease when using interpolant-based annotations.
This is also confirmed by the fact that, as observed during the execution on the
NSL example, the average time needed to calculate and propagate an interpolant
is 9.1-27.3% lower than the average time used to perform a step of symbolic
execution together with the corresponding satisfiability checking.

5 Concluding Remarks

We have presented a method that starts from a formal security protocol specifi-
cation and combines Craig interpolation (to prune useless traces so as to avoid a
quantifier elimination phase that is usually an expensive task, cf. [13]), symbolic
execution and the standard Dolev-Yao intruder model to search for goals, i.e.,
possible attacks on the protocol. In particular, our method adopts (almost ver-
batim) the IntraLA algorithm proposed by McMillan in [13]. Other approaches
have similarly benefited from IntraLA, e.g., it has been integrated in the BLAST
tool [9], but our results are different from theirs in terms of both the application
field and the methodology we have used to perform the analysis. In fact, one
of the main differences between our work and [9, 13], is the way we construct
the control flow graph, in particular to accommodate the fact that security pro-
tocols are not sequential programs when we analyze them in the presence of a
Dolev-Yao intruder. For this, we have taken inspiration from protocol analysis
tools such as the AVANTSSAR Platform [1], from which we have lifted the input
specification language and the formalization of the intruder actions.

Given its prototypical nature, some aspects of our method require further
work. For instance, the full automation of the generation of control flow graphs
and the handling of infinite scenarios will allow us to compare with other security
protocol verification tools [1, 2], with which we also expect useful interaction.

We are currently working at extending the procedure for translating protocols
into sequential programs in order to cover all the constructs of the ASLan++
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language, thus enabling the application of our method to more complex secu-
rity protocols, as well as at giving a formal proof of the correctness of such a
translation. We also aim to extend the method with the possibility of expressing
protocol goals as LTL properties (like in AVANTSSAR) as we would like to use
Craig interpolation not only to prune the search space but also to check which
of the possible reachable states can or can not lead to the intended goal.
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Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In FMSE. ACM, 2008.

4. Armando, A., Pellegrino, G., Carbone, R., Merlo, Balzarotti, D.: From Model-
Checking to Automated Testing of Security Protocols: Bridging the Gap. In TAP,
LNCS 7305:3–18. Springer, 2012.
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